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ABSTRACT Page object detection is crucial for document understanding. Different granularities for objects
can result in different performances. In this study, block level region object detection is considered among the
inherent hierarchical structure for document images. Inspired by Mask R-CNN (Region-based Convolutional
Neural Networks) method, an end to end network is proposed to perform object classification, bounding box
identification, and page object mask generation at the same time. Latex based synthetic document generation
is designed for enlarging the training data. A large number of synthetic page images are generated for training
to alleviate the insufficient dataset problem. Compared with existing page object competition methods,
the proposed method achieves better results, with mAP of 0.917 on page objects such as table, figure and

maths detection.

INDEX TERMS Page object detection, document images, deep learning, convolutional neural networks.

I. INTRODUCTION

Document image processing technology has become an
important technology for machine understanding and arti-
ficial intelligence (AI) tasks. The sustainable development
of document image processing technology helps Al algo-
rithms and robots to obtain relevant image information, which
contains human intellectual labor (documents). Generally,
the pipeline of document image processing consists of three
steps: pre-processing (binarization, noise/blur removal, rec-
tification, etc.), page layout analysis (detection, identifying
Regions of Interest, Rol) and logic understanding (gaining
application-specific information from each Rol). Therefore,
document image processing technology play a vital role in
machine understanding and Al tasks.

In machine understanding, there are various application
scenarios like information retrieval and mobile reading,
which are based on page object extraction from document
images. Traditionally, there are two major successive parts,
layout analysis and logical understanding, taking part in
the process. Layout analysis aims to detect and segment
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document page geometrically into regions, and subsequently
logical understanding is to classify the segmented regions
semantically into like tables, figures, formulae, text, and
other page parts. However, recognition performance highly
depends on the front-end layout segmentation results. A pos-
sible error in first segmenting stage tends to accumulate the
misclassification in second recognition stage.

Recently, deep learning has become the most popular
solution to object detection as well as semantic segmenta-
tion in natural scene images. It is made possible to detect,
segment and classify objects in an end-to-end manner for
image processing. Two kinds of state-of-the-art methods are
known as one-stage detector and two-stage detector. One-
stage detector treats detection as a regression task, such as
SSD (Singe Shot MultiBox Detector) [1], YOLOv4 (You
Only Look Once v4) [2], and YOLACT++ [3], etc. And
two-stage methods using two steps: region proposal and
classification/regression, like R-CNN (Region-based Con-
volutional Neural Networks) [4], Fast R-CNN [5], Faster
R-CNN [6], etc. There are also attempts in applying deep
learning based methods to document images. Some are
designed for end to end pixel level analysis, while others aim
to detect and classify regions with bounding boxes. Take FCN
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(Fully Connected Networks) as an example, it is able to
simultaneously segment and classify document images at
pixel level [7], [8]. It first extracts feature maps from
convolutional neural network, and then deconvolution is
performed to obtain full resolution semantic segmentation
results. Another category is based on region proposal scheme,
where the results are presented in regional bounding boxes.
R-CNN [4] is popular among the region proposal meth-
ods. Various Faster R-CNN based methods [5] have been
competed in page object recognition competition to detect
the object bounding boxes [9]. In Faster R-CNN [6], the
shared features are extracted from backbone network. The
RPN (Region Proposed Network) is designed for producing
candidate regions of interests, which made the inference
faster than general R-CNN. Faster R-CNN can output both
class labels and a bounding box offset for each candidate
object.

With further advancements, Mask R-CNN [10] adds mask
branch output on previous Faster R-CNN basis. Features are
first extracted by backbone network, and the proposals are
predicted and further refined to regress the bounding boxes
for object detection and produce segmentation masks. The
mask provides pixel-level semantic segmentation for each
candidate object. Thus, Mask R-CNN achieves instance seg-
mentation which involves both object detection and semantic
segmentation. It integrates the improvements on both Faster
R-CNN and FCN (Fully Connected Network). It applies Rol
Align so as to preserve spatial orientation of features without
losing the information when downsampling. As a two-stage
object recognition method, it has become increasingly popu-
lar for various applications.

Inspired by previous works, in this paper, we utilized
Mask R-CNN architecture on document image page object
detection. A ResNetl01 backbone with Feature Pyramid
Network was trained for document images. Mask R-CNN
performs FCN only for region of interest predicted, from
which segmentation masks are produced. Both bounding box
level recognition and pixel level classification are available.
Insufficient data for training is one of the problems for page
object recognition. In this paper, we generate large number
of synthetic data for this usage. On six different datasets,
including POD2017 (Page Object Detection) dataset, various
experiments are designed to evaluate our method. Compared
with previous page object detection methods, the proposed
method achieves better AP results on page objects like table,
figure and maths detection.

Our method extends the general framework Mask R-CNN
to document image processing. It can achieve simultaneously
page layout analysis and logical understanding. The output
of the method comprises three parts: bounding box, mask
and classification, as shown in Fig. 1, which represent Rol
as layout analysis output (bounding box, mask) and logi-
cal understanding (classification), respectively. Aspect ratio
of page objects is analyzed for RPN, and synthetic page
images are generated for training. And experiments show
that our method designed for document image leads to better
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performance than network designed for image in natural
scene in page object detection tasks.

The rest of the paper is organized as follows. Related work
on image document analysis is introduced in Section 2. The
adapted network architecture is proposed in Section 3. Exper-
imental results are presented at Section 4. The conclusions are
given in Section 5.

Il. RELATED WORK

Document image understanding is an important application
of artificial intelligence and machine understanding. How-
ever, before realizing machine understanding, different types
of research work are involved, including: binarization [11],
rectification [12], optical character recognition (OCR)
[13], [14], page layout analysis which includes page seg-
mentation [15], text Line segmentation [16], and charac-
ter segmentation [17], etc. And then, logic understanding
is implemented, such as document classification [18], font
recognition [19] and graphics recognition [20], etc.

Page layout analysis aims at detecting and segmenting
text from non-text, followed by layout logic understand-
ing so as to accomplish the task of recognizing logical
classes like paragraph, figure, and table, etc. Traditionally,
layout analysis and logical understanding are two major sep-
arated successive parts. For page segmentation, bottom-up
and top-bottom methods are major approaches [21]-[24].
As for logic understanding, various classifier were utilized
for classification such as Support Vector Machine [25], [26],
and CRF [27]-[29].

To detect, segment and classify objects in an end-to-end
manner, deep learning has been used as a basic method for
object detection and semantic segmentation. Convolutional
Neural Network (CNN) is powerful in representing hierar-
chal features. Deep networks are able to naturally integrate
low/mid/high-level features and classifiers. A large number
of methods have been proposed. CNN based networks have
been applied on document classification and recognition,
such as MobileNetV2 [30], dilated convolutional network [7].
Improvement for document image detection, segmentation
and classification has been made with CNN [31]. It was
claimed that various CNN architectures, including VGGNet,
ResNet, GoogLeNet, DeconvNet, etc., were the most fre-
quently used in image document processing [32].

Recently, ICDAR (International Conference on Document
Analysis and Recognition) held Page Object Detection (POD)
competition, focusing on detecting tables, mathematical
equations, and figures. In POD competition of 2017 ICDAR
conference, almost all the participated teams used deep learn-
ing for object detection, including popular SSD (Single Shot
MultiBox Detector), Faster R-CNN based models [9]. It was
also stated that there was possible improvement upon detec-
tion precision besides using Faster R-CNN. Multi-models
also contributed to better performance of deep networks, with
the help of extra information from OCRs, or CRF unary and
binary features.
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FIGURE 1. The framework of page object detection network based on Mask R-CNN.
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FIGURE 2. The detail of backbone network. ResNet-101 is utilized for CNN in Fig. 1.

Despite the Faster R-CNN based method to detect the
outside bounding boxes for document page object, there is
another way to predict class labels in pixel-wise level. Fully
convolutional network (FCN) was utilized for semantic seg-
mentation [33]. Based on coarse feature map extracted from
CNN, deconvolution was performed to obtain full resolution
segmentation mask. Dilated Residual Network (DRN) [34]
replaced subsampling layers by adding dilation, which could
be applied for page document semantic segmentation.

By adding FCN on proposed region candidates, Mask
R-CNN added mask branch output on Faster R-CNN. The
mask provided pixel-level semantic segmentation for each
candidate object [10]. In this paper, our model utilizes Mask
R-CNN as basic network architecture on document image
page object detection and recognition. A ResNet101 back-
bone with Feature Pyramid Network is trained for document
images. Mask R-CNN performs FCN only for region of
interest predicted, from which segmentation masks are pro-
duced. Both bounding box level recognition and pixel level
classification are produced. Our mask can detect and segment
the region as well as semantically label the region.

In the existing studies on page object detection and recog-
nition, high level representation of document remains an open
challenging problem. The granularity is crucial for perfor-
mance. In this paper, the block level is of our consideration.
Four page object classes include text, figure, table, and maths.
Small objects like maths are referred as isolated formulae.
The embedded maths among textlines is considered as text
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block region in ground truth. Tables have various types,
among which some have three lines, and others have non
lines. For tables and figures, captions are regarded as text
block as well for better performance. To alleviate the problem
of limited document ground truth data for deep network
training, we generate synthetic document images to enlarge
the dataset. Experiments on six datasets are implemented
to evaluate the Mask R-CNN based page object detection
method.

llIl. PROPOSED METHOD

A. NETWROK ARCHITECTURE

Inspired by a general Mask R-CNN for object detection
and segmentation, the object shape masks are better con-
tours for object than bounding boxes, while semantic seg-
mentation is better for depicting region of interest. In this
paper, Mask R-CNN is adapted for page object recognition
for document images. As is shown in Fig. 1, the overall
framework consists of several parts: a Convolutional Neu-
ral Network (CNN) backbone with Feature Pyramid Net-
work (FPN) [35], a Region Proposal Network (RPN) [6],
Rol (Region of Interest) features extraction using Rol align,
bounding box regression, label classification and mask pre-
diction. Fig. 2 illustrates ResNet-101 [36] is utilized for the
CNN in Fig. 1. As seen in Fig. 2(a), there is a bottom-
up path in ResNet-101, along which resolution of feature
image is reduced. In contrast to ResNet-101, FPN is a top-
down process, in which resolution of feature image increases.
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Lateral connections between ResNet-101 and FPN combines
features with the same resolution from ResNet-101 and FPN
respectively, to generate new features in FPN [10]. Fig. 2(b)
shows features extraction process, in which resolution reduc-
tion pathway in ResNetl01 and four features are demon-
strated. Whereas, FPN has a resolution increase pathway. Two
features with the same resolution from ResNet101 and FPN
respectively are combined to generate a new feature along the
pathway in FPN.

A ResNet101 backbone with FPN was utilized to train
the model for document images. FPN is a top-down fea-
ture pyramid architecture for detecting objects at multi-scale
level. Four last residual blocks {C,, C3z, C4, Cs} are used
as feature outputs. The lateral connections have enhanced
semantically feature maps. FPN outputs final set of feature
maps (P2, P3, P4, Ps, Pg).

Based on the feature maps extracted by the backbone
network, appropriate proposals for page objects need to be
generated. Region Proposal Network (RPN) is adapted to
document page objects. In this work, proposals for page
objects including figure, table, maths, and text are in block
level instead of fragment level. Fig. 3 shows that the aspect
ratio distribution vary according to different page objects,
including text, table, figure, and maths regions in this sce-
nario. Aspect ratio is measured by the proportion of width
and height. The ratio of tables and figures shape varies mostly
within 10. While text and maths region have larger values,
even reaching to 70. The multiple scales require multiple
feature representations and multiple scale region proposal
candidates. FPN outputs five stages (P>, P3, P4, P5, Pg), and
anchors are set to (0.5, 1, 2, 3) for each stage. For example,
a 1024 x 1024 document image is fed into the FPN network.
From stage P2 to stage P6, there are 256 x 256, 128 x 128,
64 x 64, 32 x 32, 16 x 16 five types of feature maps are
generated. Document images, being different from natural
scene images, have their own data portraits. Page objects vary
in multiple scales. Object aspect ratio distribution shows that
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FIGURE 3. The aspect ratio distribution for document page objects.
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figures and tables belong to large objects, while compared
with small maths objects. Text blocks occupied majority of
the distribution. FPN is suitable to extract features for page
objects with various scales. A small object appears only in a
small area in final feature maps.

After RPN, Rol Align [10] is used to extract accurate
features in proposed method. Rol is positive when it has IoU
(Intersection over Union) with ground-truth box of at least
0.5. Otherwise, it is considered a negative Rol. All the anchor
boxes over the image can be classified as positive or negative
according to the object score. Positive, negative, and neutral
ratio is 1:1:1. Sampled Rols is 2000 for FPN backbone.

For bounding boxes regression and classification, Faster
R-CNN extracts Rol features from each level of FPN fea-
ture maps, and it provides candidate boxes. Positive anchors
do not necessarily cover the whole object. RPN regresses
a refinement to the anchors in order to correct the object
boundaries. For a given positive proposal, to obtain the best
matched horizontal rectangle, the matched boxes are shifted
and resized to align with the proposal and target map.

For Mask branch, a fully convolutional network is used
to produce the region segmentation maps and to make pre-
dictions. Mask target is the intersection between a Rol and
its associated ground-truth mask. In our scenario, a common
four-page object mask maps with size 32 x 128 and a back-
ground map can be predicted.

B. EVALUATION

To accomplish the goals of object detection, object recogni-
tion, semantic segmentation, and the multi-task loss include
classification loss Loss.js, bounding-box loss Lossppex, and
mask 1oss LosSpask. The mask branch produces 3 x m x m
dimensional output for each Rol, after sigmoid function, and
the loss function of mask branch applied average binary
cross-entropy. It is claimed that the binary cross-entropy is
better than multinomial cross-entropy loss [10]:

n
Lossmask = — »_ Jilogi + (1 = log(1 =3 (1)
i=1
The loss function of classification branch applied to cross-
entropy:

n
Losseis = — Y _ 9ilog3; 2
i=1
The loss function of bounding-box applied Smooth L,
Loss:

0.5x2
|x] — 0.5

if x| <1
otherwise

LosSppox = { 3)
C. SYNTHETIC DATA GENERATION

Insufficient training data may cause the network to overfit the
data. To alleviate the problem of limited document ground
truth data for deep network training, we selected various
datasets used in existing studies and enriched our dataset with
synthetic document. There also existed several attempts in
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generating synthetic documents. Yang et al. produced doc-
ument images by scrapping data from internet and applying
Latex [7]. Yi et al. used semi-automatic method to label
ground truth [31]. In this paper, a large number of synthetic
data is generated to enrich the training data.

The predefined parameters for layout generation include
font size, font color, page size, line space, margin space,
figure size, page number, and total region number, etc. Given
possible page objects set DO;,i = 1,2,3, ..., N, the corre-
sponding class labels are defined as y;,i = 1,2,3,..., N,
where y; € {Typej|j =1,2,3,...,M}. Here, Typej repre-
sents: text, figure, maths, table objects in this dataset. For each
Typej, the data source is denoted as Setj,j = 1,2,3,..., M,
which can be crawled from internet or parsed from PDF
pages. The generation applied top down method, from overall
layout to page objects. The generation process is summarized
as follows:

o Generate header;

« Setsingle column, double columns or multiple columns;

« Starting from first column, according to y;, generate ran-
dom page objects DO; and record the spatial coordinates
DO; — Coors and its specific contents DO; — Content;

« Generate page objects randomly till there is no space left
in last column;

o Generate foot and page number. It is unnecessary to have
all the page objects appearing in one page. y; will decide
whether there is no header, foot, page number, or other
page objects. It is also allowed to configure certain page
object included in the page;

o Use TeX mark language to generate the code for target
PDF document page, which can be exported as a docu-
ment image at the same time.

The data source Set; for each Type; can either comes from the
internet crawling data or the block data exported from eligible
PDF parser.

IV. EXPERIMENTAL RESULTS

A. DATASETS FOR TRAINING

To explore the performance of our network architecture on
document page object detection, we investigated six datasets
for training: DSSE-200 [7], POD2017 [9], RDCL2019 [37],
Marmot [28], Doc2020 and SynDoc. The following list elab-
orated these datasets.

o DSSE-200 provides 200 labeled document images,
which were used in Yang’s work [7]. This dataset origi-
nally has 6 classes, within which text, section, caption
and list are aggregated into text blocks in our work.
Hence, there are 3 classes including text, figure and table
blocks involved in training and testing.

o« POD2017 dataset has total 2417 document images
selected from CiteSeer scientific papers, including
3 manually labeled classes: table, figure, and maths. This
dataset has a variety of page layouts, including single-
column, double-column and multi-column scientific
papers. This dataset is from page object detection (POD)
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competition in 2017 ICDAR conference. There are
9422 objects in total, with around 58% formulas, 31%
figures and 11% tables.

« RDCL2019 has total 478 images from scanned maga-
zines and technical articles. It was provided for recogni-
tion of documents with complex layouts. In this paper,
3 classes are aggregated, including Text, Table, and
Figure.

o Marmot selected from 35 English and Chinese books
has 244 image pages which were also used in
our previous work 28]. It can be accessed through
http://www.icst.pku.edu.cn/cpdp/sjzy. Our ground-
truthing tool based on wxpython was able to label the
document images at a given granularity. In this paper,
we mark the document pages at block-level. A set of 3
classes includes text, figure, table and maths.

o Do0c2020 has 195 document images manually labeled
from scientific paper. As previous datasets, 4 classes
include text, figure, table and maths.

o SynDoc document images are generated automatically
by applying Latex. 3 classes including text, figure, and
table are used for training and testing.

These date set is summarized in Table 1.

TABLE 1. Six datasets for training.

Dataset Text Table Figure Maths Blocks Pages
DSSE 2182 79 285 0 2546 200
POD2017 0 1020 2955 5447 9422 2417
RDCL2019 8271 48 639 34 8992 478
Marmot 1753 38 239 166 2196 244
Doc2020 3358 46 307 423 4134 195
SynDoc 13050 3712 1849 0 18611 1803
Total 28614 4943 6274 6070 45901 5337
In total, there are 5337 document images with

45901 blocks. As is expected in most documents, text block
class dominates with 62% blocks. And there are around
14% figures, 13% maths, and 11% tables. The data distri-
bution among these 4 classes is not exactly balanced. All
the document images for training and testing are divided
approximately with a ratio of 4:1.

In most cases, our labeling tool uses an open source tool
called VIA (VGG Image Annotator) [38]. Rectangular boxes
and semantic classes are marked. The ground truth is stored
in json format. Our self-developed labeling tool is called Mar-
mot [39], which is able to label the classes hierarchically. The
ideal solution should be hierarchical, which includes block
level, fragment level, and the relationship between different
granularity regions. The hierarchical bounding boxes can be
stored in a tree structure. Our own data are produced with
assistance of a self-developed ground-truthing tool called
CLAW. Ideally, the layout for pages should be a hierarchical
structure, built upon different level of granularity. In this
work, block level is our consideration.
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TABLE 2. Comparison of our method with the state-of-the-art on ICDAR2017 POD dataset [9].

Method AP (IoU=0.6) AP (IoU=0.8)
Maths Table Figure mAP Maths Table Figure mAP
NLPR-PAL 0.839 0.933 0.849 0.874 0.816 0.911 0.805 0.844
icstpku 0.849 0.753 0.679 0.760 0.815 0.697 0.597 0.703
FastDetectors 0.474 0.925 0.392 0.597 0.427 0.884 0.365 0.559
Vislnt 0.524 0914 0.781 0.740 0.117 0.795 0.565 0.492
SOS 0.537 0.931 0.785 0.751 0.109 0.737 0.518 0.455
UITVN 0.193 0.924 0.786 0.634 0.061 0.695 0.554 0.437
Matiai-ee 0.116 0.781 0.325 0.407 0.005 0.626 0.134 0.255
HustVision 0.854 0.938 0.853 0.882 0.293 0.796 0.656 0.582
Li et al. [40] 0.878 0.946 0.896 0.907 0.863 0.923 0.854 0.880
YOLACT++ [3] 0.567 0.940 0.832 0.780 0.185 0.913 0.793 0.630
ours 0.947 0.959 0.845 0.917 0.901 0.917 0.813 0.877
The previous PRImA dataset used PAGE format for 0 ol 1
.. .. otal_loss
2019 ICDAR competition on recognition of documents Joss.box reg
with complex layout [37]. Within their dataset, non- 08 —— loss_classifier
rectangular shaped regions are annotated. For mask ground loss_mask
truth, RDCL2019 dataset utilized non-rectangular shapes.
For other datasets, rectangular bounding boxes mark the mo'ﬁ'
ground truth. Generally, regions are defined as rectangu- 3
lar areas. The ground truth is stored in XML format. 041
An XML based ground-truth data format is designed,
which can be transformed into COCO format for unified sl
interface.
M it A
B' IMPLEMENTATION DETAILS 00 6 SObO 10600 15600 20(I]OO 25600 30600 35600
Iterations

Our network architecture is implemented in pytorch. All the
input images are scaled into 800 pixels on short edge. Popular
pretrained models on natural images are not suitable for
document images. Therefore, the convolutional network is
trained from scratch with random initialization.

We trained on 8 GPUs for 36000 iterations for 108 epochs,
with 2 images per GPU. The learning rate is 0.005, with
weight decay 0.0001, momentum 0.9. Adam optimization
is used. RPN has 5 scales and 4 aspect ratios, where the
5 scales are (8, 16, 32, 64, 128) and the 4 aspect ratios
are (0.5, 1, 2, 3). Rol threshold considered positive is 0.5.
The ratio of positive to negative Rol is 0.25. Each image
has 2000 sampled Rols for training. The candidate boxes
are predicted by non-maximum suppression. Among the
highest scoring 100 boxes, mask branch is applied to pre-
dict K masks per Rol. K is the predicted class. At test
time, the proposal number is 300 for C4 backbone and
1000 for FPN.

ToU (Intersection over Union) threshold is set to 0.6 and
0.8, as is the same in paper [9]. Given precision P, recall
R, AP (Average Precision) metric is applied to evalu-
ate the performance. AP is the mean P of 101 points,
defined as

1
101
We train the model with 8 GPUs (TITAN XP 12G). Train-

ing takes about 5 hours for 36000 iterations. If only 1 GPU
is used, training also takes 5 hours for 36000 iterations, but

max P(ﬁ).
Re(0.00,0.01....,0.50....,0.99,1.00) &7~ g
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FIGURE 4. The loss curves using 1 GPU.

batch size is 2 (2 images per GPU), whereas, the batch
size is 16 corresponding to 8 GPUs. That is to say, with
8 GPUs, the model uses 8-fold data than 1 GPU. In other
words, the model is trained faster using 8 GPUs than
1 GPU. For demonstration, Fig. 4 illustrates the loss curves
using 1 GPU. In this figure the losses are normalized.
“loss_mask”, “loss_classifier”’, and ‘“loss_box_reg” are
defined as (1) ~ (3) respectively, and “total_loss’ is the
sum of three. “total_loss” and “loss_mask”™ have dramatic
decline by the 5000 iterations. Although “loss_box_reg’” and
“loss_classifier”” don’t show the same falling gradient, they
decrease steadily. And all loss curves see a steady decrease
in the training process. Overall, our method converges very
quickly before 5000 iterations. As for inference, the model
runs at 0.089s per image. Actually, if the implement is opti-
mized, the better speed would be got.

C. EVALUATIONS USING POD2017

To evaluate our method, we compare our method with 8 meth-
ods in the ICDAR2017 POD competition (POD2017) [9], and
two recent methods are compared additionally: Li ez al. [40]
(in 1998) and YOLACTH++ [3] (in 2020). As shown
in Table 2, the first 8 rows of the table show performances
of methods in POD2017 competition. Methods Li et al. [40]
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FIGURE 5. The mAP curves of our method and YOLACT++ which is not designed for document image with loU

of 0.6 (a) and loU 0.8 (b) in training.

and YOLACT++- [3] are trained with the same configuration
of ours.

All 11 methods are evaluated with mean of AP (mAP)
and AP for different objects. Given IoU threshold of 0.6,
our method gains best mAP 0.917, which is slightly higher
than Li et al. (0.907). Although YOLACT++ is more recent
method (in 2020) than Li er al. (in 2018), it gets lower mAP
0.780. YOLACT++ was more likely designed for natural
image, so it is reasonable to get lower mAP than Li et al,
which was designed for document image. NLPR-PAL and
HustVision acquire good mAPs: 0.874 and 0.882. The former
makes an integration of various strategies, including Support
Vector Machine (SVM), Conditional Random Fields (CRF),
Faster-RCNN, etc., to deal with different page objects. The
latter employs five models based on CNN for different sizes
of images. By fully considering page object size distribution
(Section IIT Part A), our method achieves the best mAP.
Especially for maths, our method significantly overcomes
others with mAP 0.947, and Li et al. has the second top 0.878.
When it comes to Table class, the top two mAPs are 0.959
(our method) and 0.946 (Li et al). However, evaluation on
Figure shows the two highest mAPs are 0.896 (Li et al) and
0.853 (HustVision).

Overall, mAPs of our method are better than others
in Table 2 on IoU of 0.6 except that on Figure. NLPR-PAL,
icstpku, Li et al. and HustVision all consider inherent char-
acteristics of page objects in document image, therefore they
perform well. YOLACTH+ was not designed for document
image. Vislnt, SOS, UITVN, Matiai-ee are Faster R-CNN
based methods or its variations, which output bounding boxes
for page objects. By contrast, our method based on Mask
R-CNN considers not only bounding box based detection but
also semantic detection to output pixel-wise detection (mask)
for objects, so as to performs better on small objects, such as
Maths.

For IoU threshold of 0.8, on Maths, our method still outper-
forms other methods with mAP 0.901 and Li ef al. gets sec-
ond place (mAP 0.863). Considering average mAP with IoU
threshold of 0.6 and 0.8, our method gets 0.897 which is
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slightly better than average mAP 0.8935 of Li et al. So it is
safe to conclude that our method gets rank one according to
evaluation in Table 2.

To compare network designed for document image with
network designed for image in natural scene, Fig. 5 shows
mAP curves of our method and YOLACT++ with IoU
of 0.6 and 0.8 in training. In Fig. 5(a), the mAP of our method
gets a better start exceeding the mAP of YOLACT+H+ at the
5000 iterations. After 10000 iterations, two curves remain
parallel. And Fig. 5(b) shows similar trend. A network
designed for document images can represent the inherent
the characteristics of dataset, Hence, it can result in better
performance in Table 2.

D. PIXEL-WISE DETECTION BETTER THAN

REGION DETECTION

To further investigate the detection accuracy of our method,
datasets with more complex layout structures are used to
visualize detection results. As is can be seen in Fig. 6, page
detection results from dataset RDCL2019 and Marmot are
quite promising. Aggregated page objects, including text
block, figure, table, and maths are shown in different color.
The color palette is specified as [0,255,255] “aqua” for
text blocks, [255,0,0] “red” for maths, [255,0,255] “fuch-
sia” for figures, [255,255,0] “yellow” for tables. For doc-
uments with complex layout, such as RDCL2019 dataset,
there exist overlapping region between different page objects.
Both Fig. 6 (a) and (c) have overlapped area between text
and figure blocks when using bounding box recognition
results. The pixel-wise mask prediction results marked with
coloring pixels are generally better with the use of FCN
within each proposed candidate region. Within the tables or
figures, text line might appear to be table cells or illustrative
texts. These text blocks did not show the misclassification
in Fig. 6 (b).

The high confident text proposals with tables or figures are
not misclassified. Although small regions are still challeng-
ing, the equation number following maths can be missed for
detection in Fig. 6 (d). This method is capable of handling
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FIGURE 6. Example documents and their page object detection results. (a) and (c) are from RDCL2019 dataset. (b) and (d) are from
Marmot dataset.

various shapes of page objects in complex layout documents.
Unlike full page FCN method, its FCN is carried out only
within each region candidate instead of the whole page, since

pixel level segmentation has more expensive computational
cost. And it is unnecessary to take extra post processing
to clean the segmented masks. The bounding boxes plus
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mask prediction for page object blocks are produced by two
branches at the same time.

V. CONCLUSION

In this study, to detect hierarchical page objects for docu-
ment images, a Mask R-CNN based network was proposed
to output end to end results, including object classification,
bounding box identification and page object mask generation.
Block level region object recognition was of our consid-
eration among various granularities. Latex based synthetic
generation was designed to enlarge the training dataset. Com-
pared with previous ICDAR page object detection compe-
tition methods, the proposed method achieved promising
results with mAP 0.917 on dataset POD2017, which was
better than the existing page object competition methods.
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